Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa.

Identifieur interne : 002174 ( Main/Exploration ); précédent : 002173; suivant : 002175

Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa.

Auteurs : Weihua Liao [République populaire de Chine] ; Lexiang Ji ; Jia Wang ; Zhong Chen ; Meixia Ye ; Huandi Ma ; Xinmin An

Source :

RBID : pubmed:24870810

Descripteurs français

English descriptors

Abstract

Stem blister canker, caused by Botryosphaeria dothidea, is becoming the most serious disease of poplar in China. The molecular basis of the poplar in response to stem blister canker is not well understood. To reveal the global transcriptional changes of poplar to infection by B. dothidea, Solexa paired-end sequencing of complementary DNAs (cDNAs) from control (NB) and pathogen-treated samples (WB) was performed, resulting in a total of 339,283 transcripts and 183,881 unigenes. A total of 206,586 transcripts were differentially expressed in response to pathogen stress (false discovery rate ≤0.05 and an absolute value of log2Ratio (NB/WB) ≥1). In enrichment analysis, energy metabolism and redox reaction-related macromolecules were accumulated significantly in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses, indicating components of dynamic defense against the fungus. A total of 852 transcripts (575 upregulated and 277 downregulated transcripts) potentially involved in plant-pathogen interaction were also differentially regulated, including genes encoding proteins linked to signal transduction (putative leucine-rich repeat (LRR) protein kinases and calcium-binding proteins), defense (pathogenesis-related protein 1), and cofactors (jasmonate-ZIM-domain-containing proteins and heat shock proteins). Moreover, transcripts encoding glutathione S-transferase (GST) were accumulated to high levels, revealing key genes and proteins potentially related to pathogen resistance. Poplar RNA sequence data were validated by quantitative real-time PCR (RT-qPCR), which revealed a highly reliability of the transcriptomic profiling data.

DOI: 10.1007/s10142-014-0379-y
PubMed: 24870810


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa.</title>
<author>
<name sortKey="Liao, Weihua" sort="Liao, Weihua" uniqKey="Liao W" first="Weihua" last="Liao">Weihua Liao</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory, College of Biological Sciences and Biotechnology, Beijing Forestry University, P.O. Box 118, Beijing, 100083, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory, College of Biological Sciences and Biotechnology, Beijing Forestry University, P.O. Box 118, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ji, Lexiang" sort="Ji, Lexiang" uniqKey="Ji L" first="Lexiang" last="Ji">Lexiang Ji</name>
</author>
<author>
<name sortKey="Wang, Jia" sort="Wang, Jia" uniqKey="Wang J" first="Jia" last="Wang">Jia Wang</name>
</author>
<author>
<name sortKey="Chen, Zhong" sort="Chen, Zhong" uniqKey="Chen Z" first="Zhong" last="Chen">Zhong Chen</name>
</author>
<author>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
</author>
<author>
<name sortKey="Ma, Huandi" sort="Ma, Huandi" uniqKey="Ma H" first="Huandi" last="Ma">Huandi Ma</name>
</author>
<author>
<name sortKey="An, Xinmin" sort="An, Xinmin" uniqKey="An X" first="Xinmin" last="An">Xinmin An</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24870810</idno>
<idno type="pmid">24870810</idno>
<idno type="doi">10.1007/s10142-014-0379-y</idno>
<idno type="wicri:Area/Main/Corpus">002173</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002173</idno>
<idno type="wicri:Area/Main/Curation">002173</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002173</idno>
<idno type="wicri:Area/Main/Exploration">002173</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa.</title>
<author>
<name sortKey="Liao, Weihua" sort="Liao, Weihua" uniqKey="Liao W" first="Weihua" last="Liao">Weihua Liao</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory, College of Biological Sciences and Biotechnology, Beijing Forestry University, P.O. Box 118, Beijing, 100083, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory, College of Biological Sciences and Biotechnology, Beijing Forestry University, P.O. Box 118, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ji, Lexiang" sort="Ji, Lexiang" uniqKey="Ji L" first="Lexiang" last="Ji">Lexiang Ji</name>
</author>
<author>
<name sortKey="Wang, Jia" sort="Wang, Jia" uniqKey="Wang J" first="Jia" last="Wang">Jia Wang</name>
</author>
<author>
<name sortKey="Chen, Zhong" sort="Chen, Zhong" uniqKey="Chen Z" first="Zhong" last="Chen">Zhong Chen</name>
</author>
<author>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
</author>
<author>
<name sortKey="Ma, Huandi" sort="Ma, Huandi" uniqKey="Ma H" first="Huandi" last="Ma">Huandi Ma</name>
</author>
<author>
<name sortKey="An, Xinmin" sort="An, Xinmin" uniqKey="An X" first="Xinmin" last="An">Xinmin An</name>
</author>
</analytic>
<series>
<title level="j">Functional & integrative genomics</title>
<idno type="eISSN">1438-7948</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascomycota (physiology)</term>
<term>Glutathione Transferase (genetics)</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Stems (enzymology)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (microbiology)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (microbiology)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Ascomycota (physiologie)</term>
<term>Glutathione transferase (génétique)</term>
<term>Glutathione transferase (métabolisme)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
<term>Tiges de plante (enzymologie)</term>
<term>Tiges de plante (génétique)</term>
<term>Tiges de plante (microbiologie)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutathione Transferase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione Transferase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutathione transferase</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathione transferase</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Host-Pathogen Interactions</term>
<term>Molecular Sequence Annotation</term>
<term>Stress, Physiological</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Annotation de séquence moléculaire</term>
<term>Interactions hôte-pathogène</term>
<term>Stress physiologique</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stem blister canker, caused by Botryosphaeria dothidea, is becoming the most serious disease of poplar in China. The molecular basis of the poplar in response to stem blister canker is not well understood. To reveal the global transcriptional changes of poplar to infection by B. dothidea, Solexa paired-end sequencing of complementary DNAs (cDNAs) from control (NB) and pathogen-treated samples (WB) was performed, resulting in a total of 339,283 transcripts and 183,881 unigenes. A total of 206,586 transcripts were differentially expressed in response to pathogen stress (false discovery rate ≤0.05 and an absolute value of log2Ratio (NB/WB) ≥1). In enrichment analysis, energy metabolism and redox reaction-related macromolecules were accumulated significantly in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses, indicating components of dynamic defense against the fungus. A total of 852 transcripts (575 upregulated and 277 downregulated transcripts) potentially involved in plant-pathogen interaction were also differentially regulated, including genes encoding proteins linked to signal transduction (putative leucine-rich repeat (LRR) protein kinases and calcium-binding proteins), defense (pathogenesis-related protein 1), and cofactors (jasmonate-ZIM-domain-containing proteins and heat shock proteins). Moreover, transcripts encoding glutathione S-transferase (GST) were accumulated to high levels, revealing key genes and proteins potentially related to pathogen resistance. Poplar RNA sequence data were validated by quantitative real-time PCR (RT-qPCR), which revealed a highly reliability of the transcriptomic profiling data. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24870810</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1438-7948</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Functional & integrative genomics</Title>
<ISOAbbreviation>Funct Integr Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa.</ArticleTitle>
<Pagination>
<MedlinePgn>517-29</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10142-014-0379-y</ELocationID>
<Abstract>
<AbstractText>Stem blister canker, caused by Botryosphaeria dothidea, is becoming the most serious disease of poplar in China. The molecular basis of the poplar in response to stem blister canker is not well understood. To reveal the global transcriptional changes of poplar to infection by B. dothidea, Solexa paired-end sequencing of complementary DNAs (cDNAs) from control (NB) and pathogen-treated samples (WB) was performed, resulting in a total of 339,283 transcripts and 183,881 unigenes. A total of 206,586 transcripts were differentially expressed in response to pathogen stress (false discovery rate ≤0.05 and an absolute value of log2Ratio (NB/WB) ≥1). In enrichment analysis, energy metabolism and redox reaction-related macromolecules were accumulated significantly in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses, indicating components of dynamic defense against the fungus. A total of 852 transcripts (575 upregulated and 277 downregulated transcripts) potentially involved in plant-pathogen interaction were also differentially regulated, including genes encoding proteins linked to signal transduction (putative leucine-rich repeat (LRR) protein kinases and calcium-binding proteins), defense (pathogenesis-related protein 1), and cofactors (jasmonate-ZIM-domain-containing proteins and heat shock proteins). Moreover, transcripts encoding glutathione S-transferase (GST) were accumulated to high levels, revealing key genes and proteins potentially related to pathogen resistance. Poplar RNA sequence data were validated by quantitative real-time PCR (RT-qPCR), which revealed a highly reliability of the transcriptomic profiling data. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liao</LastName>
<ForeName>Weihua</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory, College of Biological Sciences and Biotechnology, Beijing Forestry University, P.O. Box 118, Beijing, 100083, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ji</LastName>
<ForeName>Lexiang</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jia</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Zhong</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Meixia</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Huandi</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>An</LastName>
<ForeName>Xinmin</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Funct Integr Genomics</MedlineTA>
<NlmUniqueID>100939343</NlmUniqueID>
<ISSNLinking>1438-793X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>04</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24870810</ArticleId>
<ArticleId IdType="doi">10.1007/s10142-014-0379-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2010 Jan 29;11:73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20109239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(4):747-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19138232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Nov;2(11):e126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7327-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8346252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Feb 28;415(6875):977-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 25;8(9):e74256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24086326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Nov 3;22(21):5690-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14592968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Mar;57(6):1000-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19000166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Aug;18(4):253-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21676972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jun;36(10):3420-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2003 Jun;26(6):915-928</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12803619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Genet. 2012 Oct;50(9-10):722-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22555558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(4):1207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19174456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Feb;18(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jun;9(6):1385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Jan 16;14:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23324106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Jan;62:23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23178481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22095046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):9969-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1946465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2012 Apr;19(2):131-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22279088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Feb;11(2):263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e34954</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22545095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Oct;163(2):531-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24014576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Dec 01;11:681</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21122097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Jun 22;14:415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23799877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Feb;20(2):120-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17313163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44968</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Feb;25(2):715-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23424246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Apr;45(6):619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Feb 05;14:78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23379821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Oct;18(5):343-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21729922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Nov;47(5):641-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11725949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 7;284(32):21249-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19520850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Jun;45(6):672-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Aug 23;288(34):24441-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23846689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 May;108(1):17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7784503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):405-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21689113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Sep;63(15):5507-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22888126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Nov;22(11):1323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19810802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2009 Sep;27(9):522-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19679362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 28;281(30):21276-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16728404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Oct 13;11:564</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20942956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 May;235(5):873-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Nov;20(11):3122-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Nov 4;28(21):3439-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19763087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e44408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22952974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Mar 17;16(6):1137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9135130</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="An, Xinmin" sort="An, Xinmin" uniqKey="An X" first="Xinmin" last="An">Xinmin An</name>
<name sortKey="Chen, Zhong" sort="Chen, Zhong" uniqKey="Chen Z" first="Zhong" last="Chen">Zhong Chen</name>
<name sortKey="Ji, Lexiang" sort="Ji, Lexiang" uniqKey="Ji L" first="Lexiang" last="Ji">Lexiang Ji</name>
<name sortKey="Ma, Huandi" sort="Ma, Huandi" uniqKey="Ma H" first="Huandi" last="Ma">Huandi Ma</name>
<name sortKey="Wang, Jia" sort="Wang, Jia" uniqKey="Wang J" first="Jia" last="Wang">Jia Wang</name>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Liao, Weihua" sort="Liao, Weihua" uniqKey="Liao W" first="Weihua" last="Liao">Weihua Liao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002174 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002174 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24870810
   |texte=   Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24870810" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020